Characterization of the β -adrenoceptors in guinea-pig lung mast cells

P.J.C.M. VAN DER HEIJDEN & J. ZAAGSMA

Department of Medicinal Chemistry, Section Molecular Pharmacology, Free University, Amsterdam, The Netherlands

Attempts to characterize the β -adrenoceptor mediating the inhibition of antigen-induced histamine release from lung mast cells have not yielded unambiguous results. Some reports indicate this receptor to differ from both cardiac and tracheal vascular receptors (Assem & Schild, 1971; Malta & Raper, 1975; Sörenby, 1977). Recently, Barrett-Bee & Lees (1978)

Table 1; for comparison the corresponding data on the relaxation of lung strip preparations induced by β -adrenoceptor stimulation are also included.

No preferential blockade by practolol of the NA-response and by H35/25 of the A-response was observed, as was the case with the lung strip; this demonstrates the receptor population to be homogenous. Both the pA₂ values of the two antagonists and the pD₂ values of NA and A are congruent with a β_2 -character of the mast cell receptors. Considerably higher pD₂ values of A and ISO were noticed for the anti-anaphylactic effect as compared to the lung strip relaxation response, however.

This study was supported by a grant from the Dutch Asthma Foundation.

Table 1 pD_2 and pA_2 values of the inhibition of antigen-induced histamine release from chopped lung tissue of ovalbumin sensitized guinea pigs. Between brackets: corresponding parameters of the relaxation of the isolated, phenoxybenzamine (10 μ M) pretreated, guinea-pig lung strip preparation

		Н35/25			Practolol		
	$pD_2 \pm s.e.$ mean	n	$pA_2 \pm s.e.$ mean	n	$pA_2 \pm s.e.$ mean	n	
(–)-noradrenaline	5.93 ± 0.09	13	6.20 ± 0.11	14	4.86 ± 0.11	7	
	(5.40 ± 0.05)	24)	(6.39 ± 0.06)	24)	(5.00 ± 0.05)	37)	
(–)-adrenaline	8.22 ± 0.24	6	6.53 ± 0.30	5	4.82 ± 0.17	8	
	(6.93 ± 0.05)	27)	(6.36 ± 0.03)	30)	(4.84 ± 0.03)	42)	
(–)-isoprenaline	8.92 ± 0.09	9	6.50 + 0.12	6	4.70 + 0.10	9 ′	
	(7.75 ± 0.05)	30)	(6.39 ± 0.04)	29)	(4.91 ± 0.06)	22)	

suggested this receptor to have a hybrid nature similar to that proposed previously for adipocyte β -adrenoceptors (Harms, Zaagsma & van der Wal, 1974). In a study of guinea-pig central and peripheral airways we recently reported on the presence of both β_1 and β_2 -adrenoceptors in the trachea whereas in the lung strip preparation a homogenous β_2 -adrenoceptor population was detected (Zaagsma et al., 1979).

This study was initiated to characterize the β -adrenoceptors involved in the anti-anaphylactic response by β -adrenoceptor agonists using chopped lung tissue of ovalbumin-sensitized guinea pigs. The experimental procedure including the histamine assay was essentially that of Barrett-Bee & Lees (1978). (-)-Noradrenaline (NA) was chosen as the β_1 -selective agonist and (-)-adrenaline (A) and (-)-isoprenaline (ISO) as the β_2 -selective agonists; the β_1 -selective antagonist was practolol and H35/25, the β_2 -selective antagonist. Agonists were given 2 min, antagonists 4 min before antigen challenge.

All agonists caused a dose-dependent inhibition of the ovalbumin-induced histamine release which was competitively antagonized both by practolol and H35/25. pD_2 and pA_2 values are summarized in

References

ASSEM, E.S.K. & SCHILD, H.O. (1971). Antagonism by β -adrenoceptor blocking agents of the antianaphylactic effect of isoprenaline. *Br. J. Pharmac.*, **42**, 620–630.

BARRETT-BEE, K. & LEES, J. (1978). The nature of the β-adrenoceptor involved in the inhibition of antigen-induced histamine release. Biochem. Biophys. Res. Commun., 84, 998-1002.

HARMS, H.H., ZAAGSMA, J. & VAN DER WAL, B. (1974). β -Adrenoceptor studies. 3. On the β -adrenoceptors in rat adipose tissue. *Eur. J. Pharmac.*, **25**, 87–91.

MALTA, E. & RAPER, C. (1975). β-Adrenoceptors involved in inhibition of histamine release from sensitized guinea-pig lung. Eur. J. Pharmac., 30, 79-85.

SÖRENBY, L. (1977). Studies on the inhibition of anaphylactic histamine release from the guinea-pig lung by β -adrenoceptor stimulants. *Ph.D. Thesis*, *Univ. Uppsala*.

ZAAGSMA, J., OUDHOF, R., VAN DER HEIJDEN, P.J.C.M. & PLANTJÉ, J.F. (1979). Subheterogeneity of β-adrenoceptors in the pulmonary and the cardiac system of the guinea-pig. In: Catecholamines; Basic and Clinical Frontiers. Eds Usdin, E., Kopin, I.J. & Barchas, J. Pergamon Press, New York, Oxford. pp. 435-437.